1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

use secp256k1;
use std::io;
use parity_crypto::error::SymmError;

quick_error! {
	#[derive(Debug)]
	pub enum Error {
		Secp(e: secp256k1::Error) {
			display("secp256k1 error: {}", e)
			cause(e)
			from()
		}
		Io(e: io::Error) {
			display("i/o error: {}", e)
			cause(e)
			from()
		}
		InvalidMessage {
			display("invalid message")
		}
		Symm(e: SymmError) {
			cause(e)
			from()
		}
	}
}

/// ECDH functions
pub mod ecdh {
	use secp256k1::{self, ecdh, key};
	use super::Error;
	use {Secret, Public, SECP256K1};

	/// Agree on a shared secret
	pub fn agree(secret: &Secret, public: &Public) -> Result<Secret, Error> {
		let context = &SECP256K1;
		let pdata = {
			let mut temp = [4u8; 65];
			(&mut temp[1..65]).copy_from_slice(&public[0..64]);
			temp
		};

		let publ = key::PublicKey::from_slice(context, &pdata)?;
		let sec = key::SecretKey::from_slice(context, &secret)?;
		let shared = ecdh::SharedSecret::new_raw(context, &publ, &sec);

		Secret::from_unsafe_slice(&shared[0..32])
			.map_err(|_| Error::Secp(secp256k1::Error::InvalidSecretKey))
	}
}

/// ECIES function
pub mod ecies {
	use parity_crypto::{aes, digest, hmac, is_equal};
	use ethereum_types::H128;
	use super::{ecdh, Error};
	use {Random, Generator, Public, Secret};

	/// Encrypt a message with a public key, writing an HMAC covering both
	/// the plaintext and authenticated data.
	///
	/// Authenticated data may be empty.
	pub fn encrypt(public: &Public, auth_data: &[u8], plain: &[u8]) -> Result<Vec<u8>, Error> {
		let r = Random.generate()?;
		let z = ecdh::agree(r.secret(), public)?;
		let mut key = [0u8; 32];
		kdf(&z, &[0u8; 0], &mut key);

		let ekey = &key[0..16];
		let mkey = hmac::SigKey::sha256(&digest::sha256(&key[16..32]));

		let mut msg = vec![0u8; 1 + 64 + 16 + plain.len() + 32];
		msg[0] = 0x04u8;
		{
			let msgd = &mut msg[1..];
			msgd[0..64].copy_from_slice(r.public());
			let iv = H128::random();
			msgd[64..80].copy_from_slice(&iv);
			{
				let cipher = &mut msgd[(64 + 16)..(64 + 16 + plain.len())];
				aes::encrypt_128_ctr(ekey, &iv, plain, cipher)?;
			}
			let mut hmac = hmac::Signer::with(&mkey);
			{
				let cipher_iv = &msgd[64..(64 + 16 + plain.len())];
				hmac.update(cipher_iv);
			}
			hmac.update(auth_data);
			let sig = hmac.sign();
			msgd[(64 + 16 + plain.len())..].copy_from_slice(&sig);
		}
		Ok(msg)
	}

	/// Decrypt a message with a secret key, checking HMAC for ciphertext
	/// and authenticated data validity.
	pub fn decrypt(secret: &Secret, auth_data: &[u8], encrypted: &[u8]) -> Result<Vec<u8>, Error> {
		let meta_len = 1 + 64 + 16 + 32;
		if encrypted.len() < meta_len  || encrypted[0] < 2 || encrypted[0] > 4 {
			return Err(Error::InvalidMessage); //invalid message: publickey
		}

		let e = &encrypted[1..];
		let p = Public::from_slice(&e[0..64]);
		let z = ecdh::agree(secret, &p)?;
		let mut key = [0u8; 32];
		kdf(&z, &[0u8; 0], &mut key);

		let ekey = &key[0..16];
		let mkey = hmac::SigKey::sha256(&digest::sha256(&key[16..32]));

		let clen = encrypted.len() - meta_len;
		let cipher_with_iv = &e[64..(64+16+clen)];
		let cipher_iv = &cipher_with_iv[0..16];
		let cipher_no_iv = &cipher_with_iv[16..];
		let msg_mac = &e[(64+16+clen)..];

		// Verify tag
		let mut hmac = hmac::Signer::with(&mkey);
		hmac.update(cipher_with_iv);
		hmac.update(auth_data);
		let mac = hmac.sign();

		if !is_equal(&mac.as_ref()[..], msg_mac) {
			return Err(Error::InvalidMessage);
		}

		let mut msg = vec![0u8; clen];
		aes::decrypt_128_ctr(ekey, cipher_iv, cipher_no_iv, &mut msg[..])?;
		Ok(msg)
	}

	fn kdf(secret: &Secret, s1: &[u8], dest: &mut [u8]) {
		// SEC/ISO/Shoup specify counter size SHOULD be equivalent
		// to size of hash output, however, it also notes that
		// the 4 bytes is okay. NIST specifies 4 bytes.
		let mut ctr = 1u32;
		let mut written = 0usize;
		while written < dest.len() {
			let mut hasher = digest::Hasher::sha256();
			let ctrs = [(ctr >> 24) as u8, (ctr >> 16) as u8, (ctr >> 8) as u8, ctr as u8];
			hasher.update(&ctrs);
			hasher.update(secret);
			hasher.update(s1);
			let d = hasher.finish();
			&mut dest[written..(written + 32)].copy_from_slice(&d);
			written += 32;
			ctr += 1;
		}
	}
}

#[cfg(test)]
mod tests {
	use super::ecies;
	use {Random, Generator};

	#[test]
	fn ecies_shared() {
		let kp = Random.generate().unwrap();
		let message = b"So many books, so little time";

		let shared = b"shared";
		let wrong_shared = b"incorrect";
		let encrypted = ecies::encrypt(kp.public(), shared, message).unwrap();
		assert!(encrypted[..] != message[..]);
		assert_eq!(encrypted[0], 0x04);

		assert!(ecies::decrypt(kp.secret(), wrong_shared, &encrypted).is_err());
		let decrypted = ecies::decrypt(kp.secret(), shared, &encrypted).unwrap();
		assert_eq!(decrypted[..message.len()], message[..]);
	}
}